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REPORT

NOBOX Homeobox Mutation Causes Premature Ovarian Failure
Yingying Qin, Youngsok Choi, Han Zhao, Joe Leigh Simpson, Zi-Jiang Chen,
and Aleksandar Rajkovic

NOBOX (newborn ovary homeobox gene) is an oocyte-specific homeobox gene that plays a critical role in early folli-
culogenesis and represents a candidate gene for nonsyndromic ovarian failure. We investigated whether mutations in
the NOBOX gene cause premature ovarian failure (POF). We sequenced the NOBOX gene in 96 white women with POF
and discovered seven known single-nucleotide polymorphisms and four novel variations, two of which, p.Arg355His
and p.Arg360Gln, cause missense mutations in the homeobox domain. Electrophoretic mobility shift assay (EMSA)
confirmed that the missense mutation, p.Arg355His, disrupted NOBOX homeodomain binding to NOBOX DNA-binding
element (NBE) and had a dominant negative effect on the binding of wild-type NOBOX to DNA. Our findings demonstrate
that NOBOX mutations can cause POF.
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In premature ovarian failure (POF [MIM 311360]), ovaries
cease to mature oocytes before 40 years of age. The con-
dition is characterized by secondary amenorrhea, infertil-
ity, hypoestrogenism, and elevated gonadotropin serum
levels ( IU/liter).1 POF is heritable in up to 30%FSH 1 40
of patients and is genetically heterogeneous.2,3 Mecha-
nisms long invoked in the pathogenesis of POF include
abnormalities of the X chromosome or autosomes and
autoimmune, infectious, and environmental causes.4,5 For
some cases, a genetic basis has been shown, and, for genes
such as FMR1 (MIM 309550),6,7 FSHR (MIM 136435),8–10

POF1B (MIM 300603),11 FOXL2 (MIM 605597),12,13 and
BMP15 (MIM 300247),14 functional data support causa-
tion. Because human ovaries are not easily accessible, our
knowledge of ovarian development is largely derived from
animal models.15 Mouse knockouts and naturally occur-
ring mutations in sheep have been useful in identifying
candidate genes for ovarian failure.16–19

Human and mouse NOBOX genes (newborn ovary
homeobox [MIM 610934]) are preferentially expressed
in oocytes and encode a homeobox transcriptional
regulator.20,21 Nobox plays a crucial role during early follicu-
logenesis in the mouse.22 Disruption of the mouse Nobox
gene causes nonsyndromic ovarian failure in females,
whereas males are unaffected.23 NOBOX expression in
adult human tissues mimics that in mice, with preferential
expression in the human gonads.21 Expression within the
human ovary is oocyte specific, as observed from pri-
mordial follicle through metaphase II (MII) oocytes.
Mouse NOBOX homeodomain binds TAATTG,24 and we
have shown elsewhere that NOBOX binds such elements
in Gdf9 (MIM 601918) and Pou5f1 (MIM 164177) pro-
moters.25 In the current study, we report two novel mis-
sense mutations in the NOBOX homeodomain in women

with POF and show that p.Arg355His mutation can dis-
rupt NOBOX homeodomain binding to DNA.

Our study subjects comprised 96 white women from the
United States who had POF and had been collected at
Baylor College of Medicine since 2001. Recruitment cri-
teria comprised cessation of menstrual cycles before 40
years of age and at least two serum FSH concentrations
140 IU/liter. Women with chromosomal abnormalities
were excluded. Two hundred and seventy-eight white
women who denied having any medical problems were
used as controls. Informed consent for molecular studies
was obtained from all subjects. The study was approved
by the Institutional Review Board of Baylor College of
Medicine.

Peripheral blood was obtained and genomic DNA ex-
tracted. NOBOX-specific primers were designed according
to the human NOBOX sequence (GenBank accession
number NM_001080413 and Ensembl accession number
ENST00000389325) and are presented in table 1.

All 10 exons and exon-intron boundaries of the NOBOX
gene were amplified using PCR. PCR conditions are avail-
able on request. PCR products were sequenced directly on
an automated sequencer, ABI Prism Sequencer 3730XL
(Applied Biosystems).

Our study revealed 11 sequence variants in the coding
region of NOBOX: 7 known SNPs and 4 novel variations
(fig. 1A). All sequence variants were confirmed by three
independent PCR and sequencing reactions, followed by
sequencing in forward and reverse directions. Details are
provided in table 2.

The seven known SNPs included three intronic variants
(rs757388, rs11769847, and rs11979528), two synony-
mous variants (c.42TrC and c.262CrT), and two non-
synonymous variants (p.Gly482 Ser and p.Phe228Leu). Of
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Table 1. PCR Primers Used for Amplification of Human
NOBOX Gene

Primer
Sequence
(5′r3′)

Reference
Sequencea

NOBOX 1F ATTTAAAGACAAGCTCGAGTATC NM_001080413
NOBOX 1R CAAGAGTCCTCAGTGTATGGG
NOBOX 2F TATCTGACCAGCCCTCCGACTTT NM_001080413
NOBOX 2R ACTGCTGGAATTACAGGCGTGAG
NOBOX 3F ATGCTCTTGCCTCGGCTGCTGGA NM_001080413
NOBOX 3R AGCTTGACTATTGTGAGGATT
NOBOX 4F TGCTAAGGTCAGTGGATGTTGGC NM_001080413
NOBOX 4R CCGGGACGAAGTGACATAC
NOBOX 5F TGTAGCACCCAAGAGCGAGAA NM_001080413
NOBOX 5R TGCAGTGCCTTCCTCTCCTAATG
NOBOX 6–7F GCAACAGCCAGGACCTAAGC NM_001080413
NOBOX 6–7R GTCACTCCCACCTCCATCAAACA
NOBOX 8F TCTACCATTCAGCGATGCCAA NM_001080413
NOBOX 8R TGTGCTCCTCTCAGTTAACCC
NOBOX 9F GGGACTCCGCTACTGTGGT ENST00000389325
NOBOX 9R CGAGGGAGAAGAGCTTAATAG
NOBOX 10F GTCCTAAGCTGCGTCTATGTG ENST00000389325
NOBOX 10R CGAGCCCAATCCTATCCCA

a NM_001080413, Genbank. ENST00000389325, Ensembl.

Table 2. NOBOX Sequencing Results in 96 White Women with POF

Sequence
Variation Location

Amino Acid
Variation dbSNP ID

Allele Frequency
(%)

Referencea

Patients with POF Controls

Wild
Type Heterozygote Homozygote

Wild
Type Heterozygote

c.42TrC Exon 1 Synonymous rs1208179 71.9 28.1 0 d, e
c.66TrC Exon 1 Synonymous Novel 98.96 1.04 0 100 0 d, e
c.262CrT Exon 3 Synonymous rs727714 11.5 45.8 42.7 d, e
c.1064GrA Exon 6 p.Arg355His Novel 99.0 1.01 0 100 0 d, e
c.1079GrAb Exon 6 p.Arg360Gln Novel 99.0 1.01 0 99.3 .7 d, e
c.1154�11TrC Intron 6 rs757388 11.5 45.8 42.7 d, e
c.1155�22GrA Intron 6 rs11769847 11.5 45.8 42.7 d, e
c.1354GrAb Exon 8 p.Asp452Asn Novel 99.0 1.01 0 94.8 5.2 d, e
c.1444GrA Exon 8 p.Gly482Ser rs2525702 72.9 26.0 1.1 d, e
c.603–51GrT Intron 8 rs11979528 29.2 44.8 26.0 f, g
c.682TrC Exon 9 p.Phe228Leu rs2699503 14.6 47.9 37.5 f, g

a d p GenBank accession number NM_001080413. e p NCBI protein database accession number XP_001134420. f p Ensembl accession
number ENST00000389325. g p Ensembl accession number ENSP00000373976.

b Allelic frequencies between the general population and patients with POF show no significant differences (Fisher’s exact test )P 1 .05

the four novel variations, one was a synonymous variant
(c.66TrC) and three were nonsynonymous exonic vari-
ants: c.1354GrA (p.Asp452Asn), c.1064GrA (p.Arg355His),
and c.1079GrA (p.Arg360Gln). p.Asp452Asn was also
found in five controls at a frequency that did not differ
significantly from that in the POF sample (Fisher’s exact
test ). p.Arg355His and p.Arg360Gln were locatedP 1 .05
in the conserved homeodomain region (fig. 1A–1C).
p.Arg360Gln was also present in two controls at a fre-
quency that was not statistically different from that in
women with POF (Fisher’s exact test ). By contrast,P 1 .05
p.Arg355His was not present in the controls. p.Arg355His
mutation was found in a 35-year-old woman whose FSH
level was 103 IU/liter. Her menarche was at age 11 years,
and she entered menopause at age 32 years. She was the

mother of two healthy children and lacked overt somatic
anomalies. She was the only child of a woman who con-
ceived her at 26 years of age and who entered menopause
at 42 years of age.

The protein sequence of human NOBOX is 92% iden-
tical to the corresponding homeodomain region in the
mouse.20 Both mutations, p.Arg355His and p.Arg360Gln,
were located within the homeodomain region that is per-
fectly conserved among species ranging from zebrafish to
humans. Since a homeodomain is capable of mediating
critical protein-DNA and protein-protein interactions, and
since p.Arg355His was not present in control women, we
hypothesized that this novel mutation disrupted NOBOX
homeodomain binding to DNA.

We engineered p.Arg355His and p.Arg360Gln missense
mutations into the mouse homeodomain to test whether
these mutations will disrupt mouse NOBOX homeodo-
main binding to the NOBOX DNA-binding element (NBE)
we identified elsewhere.25 The mouse homeobox was
subcloned into the pET41b expression vector to generate
a fusion protein with glutathione-S-transferase (GST-
NXHD). Mouse missense mutations corresponding to hu-
man p.Arg355His and p.Arg360Gln (mouse p.Arg186His
and p.Arg191Gln) were generated using the QuikChange
multi site–directed mutagenesis kit (Stratagene) with oli-
gonucleotides GTGTGGTTTCAGAACCACAGGGCAAAG-
TGGAGA and CGCAGGGCAAAGTGGCAGAAAGTGGA-
GAAACTG. We transformed BL21-pLysS Escherichia coli
(Stratagene) with GST-NXHD (wild type), GST-R186H
(containing mutation p.Arg186His), and GST-R191Q (con-
taining mutation p.Arg191Gln) constructs, induced pro-
tein expression, and purified the GST-NXHD, GST-R186H,
and GST-R191Q fusion proteins on GST-bind resin (Nov-
agen). The proteins were dialyzed three times in PBS to
remove excess glutathione and were quantified with BSA
by use of the Lowry assay.
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Figure 1. Identification of novel variants in the NOBOX gene. A, Schematic diagram of the NOBOX gene, showing three novel non-
synonymous variations (exon 6 and exon 8) and one synonymous variant (exon 1) found in the present study. Exons are a composite
of human sequence NM_001080413 (GenBank) and ENST00000389325 (Ensembl). The homeodomain region is coded by exons 4–6. B,
Electropherogram showing wild-type (a and c) and mutant (c.1064GrA [Arg355His] and c.1079GrA [Ar360Gln]) sequences. Arrows
indicate the GrA change in POF subject 23 (b, Arg355His) and POF subject 34 (d, Ar360Gln). C, NOBOX homeodomain alignment among
different species. Arrow heads indicate highly conserved amino acids highly conserved among homeodomains. The two missense mutations
(p.Arg355His and p.Arg360Gln) found in this study are indicated by arrows. Asterisks (*) indicate amino acid residues that are conserved
in all the species.

We performed electrophoretic mobility shift assay
(EMSA) as described elsewhere.25 In brief, NBE (containing
NOBOX-binding consensus sequence TAATTG) was la-
beled by end-filling annealed primers with [a-32P] dCTP
and Klenow polymerase (Invitrogen) at room temperature.
The top and bottom strand oligonucleotides were 5′-ACG-
AGCTACCTTACTTAATTGGACGT-3′ and 5′-ACAGTACG-
CGTTCAACGTC-3′, respectively. Binding reactions were
conducted by incubating 32P-labeled probe (250,000 cpm/
reaction) individually with 50 ng of purified GST-NXHD,
GST-R186H, and GST-R191Q. Polyclonal anti-GST anti-
bodies (Amersham Biosciences) were used to supershift

DNA-protein complexes. Binding reactions were resolved
on a 4% polyacrylamide gel. The gel was then fixed, dried,
and exposed to Kodak BioMax XAR Film.

As shown in figure 2 (lanes 2 and 4), GST-NXHD or GST-
R191Q protein bound radiolabeled NBE with similar af-
finity. In contrast, GST-R186H protein showed a dramatic
decrease in the NBE-binding capacity (fig. 2, lane 6). In
the supershift assay, addition of anti-GST antibodies de-
creased the mobility of the GST-NXHD-NBE and GST-
R191Q-NBE complex and, as expected, diminished the to-
tal amount of the DNA-protein complex (fig. 2, lanes 3,
5, and 7). These results show that R186H mutation dis-
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Figure 2. GST-R186H binds to the TAATTG sequences with low
affinity. 32P-labeled TAATTG was incubated with purified recom-
binant GST-NXHD, GST-R191Q, or GST-R186H. 32P-labeled TAATTG
formed a strong DNA-protein complex with the recombinant GST-
NXHD (lane 2) and GST-R191Q protein (lane 4), but not with GST-
R186H (lane 6). The DNA-protein complex was supershifted when
incubated with polyclonal antibodies against GST (lanes 3, 5 and
7). The presence or absence of recombinant protein and/or an-
tibody is indicated above each lane with a plus (�) or minus (�)
sign, respectively. Arrows indicate DNA-protein complex (BP), su-
pershifted complex (SS) and free probe (FP). Oligonucleotide se-
quence containing TAATTG is 5′-ACG AGC TAC CTT ACT TAA TTG GAC
GTT GAA CGC GTA CTG T-3′.

Figure 3. Dominant negative effect of GST-R186H. Radiolabeled
NBE (32P-TAATTG) was incubated individually with purified recom-
binant GST-NXHD, GST-R186H, or a 50/50 mixture of both hom-
eodomains. GST-R186H reduced GST-NXHD binding affinity to the
32P-labeled TAATTG (lane 4). The specificity of the DNA-protein
complexes was confirmed by polyclonal antibodies against GST.
The presence or absence of recombinant protein and/or antibody
is indicated above each lane with a plus (�) or minus (�) sign,
respectively. Arrows indicate DNA-protein complex (BP), super-
shifted complex (SS) and free probe (FP).

rupted NOBOX homeodomain binding, whereas R191Q
did not exhibit a similar effect.

We also examined whether the R186H mutation inter-
fered with the DNA-binding capacity of the wild-type NO-
BOX homeodomain protein. Equivalent amounts of GST-
NXHD and GST-R186H (50 ng) were coincubated (fig. 3),
and the mixture of wild-type and R186H homedomains
exhibited weaker binding to NBE than did wild type alone
(fig. 3, lanes 4 and 2). These experiments indicate that the
R186H mutation has a dominant negative effect on the
wild-type NOBOX homeodomain and that it causes di-
minished binding affinity for the NBE. This effect was not
observed with the R191Q missense mutation.

In this study of 96 white women with POF, we found
two missense mutations in the NOBOX homeodomain,

one of which, p.Arg355His, is absent in the control pop-
ulation and disrupts NOBOX homeodomain binding to
NBE in a dominant negative fashion. Mice that are null
for Nobox are infertile and lose oocytes rapidly during
ovarian development. Nobox is therefore a critical oocyte
prosurvival factor. Partial deficiency in NOBOX function
in humans can conceivably lead to a more gradual loss of
oocytes in women and can cause POF after the onset of
puberty.

Homeodomains are generally composed of 60 aa, as is
predicted for NOBOX. The p.Arg355His missense muta-
tion is located within the highly conserved portion of the
NOBOX homeodomain at position 52 (Arg52) (fig. 1C).
Several amino acids are conserved in the majority of hom-
eodomains. These include Trp48 (W), Phe49 (F), Asn51
(N), and Arg53 (R) within the homeodomain (fig. 1C); all
reside in helix III, which has critical implications for DNA
binding and overall stability of the tertiary structure of
the homeodomains.24 Prior studies have demonstrated
that substitution of glutamine for the conserved aspara-
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gine residue at position 51 abolished NOBOX homeodo-
main binding to NBEs.25,26

Despite histidine being a polar amino acid like arginine,
p.Arg355His mutation, when engineered into a mouse
homeodomain, disrupts NOBOX binding to DNA. Arg355
in the NOBOX homeodomain is conserved from zebrafish
to humans and is a critical residue for NOBOX homeo-
domain binding to the DNA. Homeodomains are also
known to be critical in protein-protein interactions, in-
volving either homeodomains or other protein domains.27

Direct protein-protein interactions are necessary for tran-
scriptional activity.28,29 The dominant negative effect also
suggests that the NOBOX homeodomain may function as
a dimer. The p.Arg360Gln missense mutation, when en-
gineered into a mouse homeodomain, does not disrupt
protein-DNA interaction in the EMSA assay, was also
found in the control population, and is consistent with
being a novel SNP.

Our study shows that mutations within NOBOX can
cause human POF. The only previous study involved 35
Japanese women with POF and did not find mutations in
the NOBOX homeodomain.30 By contrast, our results in-
dicate that mutations within NOBOX likely account for
POF in a small subset of women. There are numerous oo-
cyte-specific genes, each of which may be responsible for
some cases of POF.31 Future high-throughput sequencing
of such genes in women with idiopathic ovarian failure
should provide a better idea of the contribution that oo-
cyte-specific genes make to nonsyndromic POF.
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